*Learning Goal: Build procedural fluency with graphing linear and exponential functions.*

# Classwork:

- Marbleslides: Lines (Desmos)
- Level Challenges
- Students work on computers as if it is a Personalized Growth Day

# Standards:

**Common Core**- HSF.IF.B.5 – Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
- HSF.IF.C.7.A – Graph linear and quadratic functions and show intercepts, maxima, and minima.
- HSF.IF.C.7.E – Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

**TEKS (2015-16)**- A.2(A) – determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both continuous and discrete; and represent domain and range using inequalities
- A.3(C) – graph linear functions on the coordinate plane and identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems
- A.9(A) – determine the domain and range of exponential functions of the form f(x) = ab^x and represent the domain and range using inequalities
- A.9(D) – graph exponential functions that model growth and decay and identify key features, including y-intercept and asymptote, in mathematical and real-world problems

Advertisements
(function(){var c=function(){var a=document.getElementById("crt-1663640373");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1663640373",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();
(function(){var c=function(){var a=document.getElementById("crt-1440972237");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:837497,containerid:"crt-1440972237",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();