*Learning Goal: Build procedural fluency with graphing linear and exponential functions.*

# Classwork:

- Marbleslides: Lines (Desmos)
- Level Challenges
- Students work on computers as if it is a Personalized Growth Day

# Standards:

**Common Core**- HSF.IF.B.5 – Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
- HSF.IF.C.7.A – Graph linear and quadratic functions and show intercepts, maxima, and minima.
- HSF.IF.C.7.E – Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

**TEKS (2015-16)**- A.2(A) – determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both continuous and discrete; and represent domain and range using inequalities
- A.3(C) – graph linear functions on the coordinate plane and identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems
- A.9(A) – determine the domain and range of exponential functions of the form f(x) = ab^x and represent the domain and range using inequalities
- A.9(D) – graph exponential functions that model growth and decay and identify key features, including y-intercept and asymptote, in mathematical and real-world problems

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({collapseEmpty:'after', sectionId:26942, width:300, height:250});
g.__ATA.initAd({collapseEmpty:'after', sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-930825387');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-930825387",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-930825387'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); } });
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}
var o = document.getElementById('crt-1152460558');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:837497,containerid:"crt-1152460558",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1152460558'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); } });
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}