*Learning Goal: Build procedural fluency with calculating slope.*

# Personal Review Guide:

- Handout
- The purpose of this handout is for students to have a go-to place to work on any necessary concepts to prepare for our state exam.

# Classwork:

- Slope Level Challenges
- Students work on computers as if it is a Personalized Growth Day

- Desmos Picture Challenge (Oliver Hewitt)
- Handout to see lines better

# Standards:

**Common Core**- HSF.IF.B.6 – Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

**TEKS (2015-16)**- A.3(A) – determine the slope of a line given a table of values, a graph, two points on the line, and an equation written in various forms, including y = mx + b, Ax + By = C, and y – y1 = m(x – x1)
- A.3(B) – calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-1371510566');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1371510566",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1371510566'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}