*Learning Goal: (1)Provide a context for slope and y-intercepts (2)Understand that linear functions have a constant rate of change and can be represented in multiple ways.*

# Activity:

- Stacking Cups (Dan Meyer)
- Lesson Implementation Guide
- Alternate version (Andrew Stadel) if you don’t have materials

# Classwork:

# Standards:

**Common Core**- HSF.BF.A.1 – Write a function that describes a relationship between two quantities.
- HSF.LE.A.1.B – Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
- 8.F.A.3 – Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
- 8.F.B.4 – Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

**TEKS (2015-16)**

Advertisements
(function(g){if("undefined"!=typeof g.__ATA){g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});}})(window);
var o = document.getElementById('crt-486028306');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-486028306",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-486028306'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}