*Learning Goal: Understand (using technology) how to calculate the correlation coefficient of a linear fit.*

# Celebrity Age Guessing:

# Classwork:

# Finished Early?

# Standards:

**Common Core**- HSS.ID.B.6 – Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
- HSS.ID.B.6.C – Fit a linear function for a scatter plot that suggests a linear association.
- HSS.ID.C.8 – Compute (using technology) and interpret the correlation coefficient of a linear fit.
- HSS.ID.C.9 – Distinguish between correlation and causation.

**TEKS (2015-16)**- A.4(A) – calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
- A.4(B) – compare and contrast association and causation in real-world problems
- A.4(C) – write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-1485015413');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1485015413",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1485015413'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}