Warm Up

Verbal Description

Coordinate Notation

In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line l.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along l, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer.

Let $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ be the image of $\Delta D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line l. Suppose that $E "$ is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

For each slope below, write a perpendicular slope.

$$
\frac{2}{3}
$$

$-\frac{5}{4}$

$$
\frac{1}{7}
$$

-4
1

How many Hershey's are in the jar?

Too Low	Official Guess	Too High

Reflections

Transformations Big Idea: Congruent parts of a polygon map to its congruent parts under a reflection.

Reflect $\triangle \mathrm{ABC}$ across the y -axis.

Reflect \triangle DEF across the x-axis.

Describe the process of reflecting the triangles above. (mapping video \rightarrow bit.ly/refmap)

The triangle, $\triangle X Y Z$, that is shown below has side lengths of x, y, and z inches and is not a right triangle. Let X^{\prime} be the image of X when the triangle is reflected across $\overline{Y Z}$. Which of the following is an expression for the perimeter, in inches, of quadrilateral $\mathrm{X}^{\prime} \mathrm{YXZ}$?

F. $2(y+z)+x$
G. $2(x+y+z)$
H. $2(x+y)$
J. $2(\mathrm{x}+\mathrm{z})$
K. $2(\mathrm{y}+\mathrm{z})$

Remember perpendicular lines? Use those to reflect the following.

Coordinate Rules

$y=x$	$y=-x$
$(a, b) \rightarrow(b, a)$	$(a, b) \rightarrow(-b,-a)$

Reflect $\triangle \mathrm{ABC}$ in the line $\mathrm{x}=-1$.

Reflect $\Delta \mathrm{EFG}$ in the line $\mathrm{y}=4$.

What is the equation of the line of reflection for each of these?

