Warm Up

Verbal Description

Coordinate Notation

In the diagram below, $\overline{AC} \cong \overline{DF}$ and points A, C, D, and F are collinear on line l.

Let $\Delta D'E'F'$ be the image of ΔDEF after a translation along l, such that point D is mapped onto point A. Determine and state the location of F'. Explain your answer.

Let $\Delta D"E"F"$ be the image of $\Delta D'E'F'$ after a reflection across line l. Suppose that E" is located at B. Is ΔDEF congruent to ΔABC ? Explain your answer.

For each slope below, write a perpendicular slope.

1

How many Hershey's are in the jar?

Too Low	Official Guess	Too High

Reflections

Transformations Big Idea: Congruent parts of a polygon map to its congruent parts under a reflection.

Reflect \triangle ABC across the y-axis.

Reflect ΔDEF across the x-axis.

Describe the process of reflecting the triangles above. (mapping video → bit.ly/refmap)

The triangle, ΔXYZ , that is shown below has side lengths of x, y, and z inches and is not a right triangle. Let X' be the image of X when the triangle is reflected across \overline{YZ} . Which of the following is an expression for the perimeter, in inches, of quadrilateral X'YXZ?

F.
$$2(y+z)+x$$

G.
$$2(x + y + z)$$

H.
$$2(x + y)$$

J.
$$2(x + z)$$

K.
$$2(y + z)$$

Remember perpendicular lines? Use those to reflect the following.

Coordinate Rules

$$y = x$$

(a, b) \rightarrow (b, a)

$$\mathbf{y} = -\mathbf{x}$$
(a, b) \rightarrow (-b, -a)

Reflect \triangle ABC in the line x = -1.

Reflect \triangle EFG in the line y = 4.

What is the equation of the line of reflection for each of these?

