*Learning Goals: (1)Create a need for the formula(2)Understand that exponential functions have a multiplying rate of change (3)Provide a context for the meaning of a and b.*

# 3 Act Math:

# Classwork:

# Standards:

**Common Core**- HSF.LE.A.1 – Distinguish between situations that can be modeled with linear functions and with exponential functions.
- HSF.LE.A.2 – Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
- HSF.LE.B.5 – Interpret the parameters in a linear or exponential function in terms of a context.

**TEKS (2015-16)**- A.9(A) – determine the domain and range of exponential functions of the form f(x) = abx and represent the domain and range using inequalities
- A.9(B) – interpret the meaning of the values of a and b in exponential functions of the form f(x) = abx in real-world problems
- A.9(C) – write exponential functions in the form f(x) = abx (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay
- A.9(D) – graph exponential functions that model growth and decay and identify key features, including y-intercept and asymptote, in mathematical and real-world problems
- A.9(E) – write, using technology, exponential functions that provide a reasonable fit to data and make predictions for real-world problems

Advertisements
(function(){var c=function(){var a=document.getElementById("crt-1553585801");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1553585801",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();
(function(){var c=function(){var a=document.getElementById("crt-1486200121");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:837497,containerid:"crt-1486200121",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();