Archives
Categories
 Algebraic Topology
 BaerSpecker group
 Cardinality
 Categorical Topology
 Category Theory
 Conferences
 coreflection functor
 Covering Space Theory
 Dendrite
 earring group
 earring space
 Examples
 Finite groups
 Free abelian groups
 Free groups
 Fundamental group
 Fundamental groupoid
 General topology
 Generalized covering space theory
 Griffiths twin cone
 Group homomorphisms
 Group theory
 harmonic archipelago
 Hawaiian earring
 Higher Homotopy groups
 Homotopy theory
 Infinite Group Theory
 Infinite products
 Inverse Limit
 locally path connected
 onedimensional spaces
 Order Theory
 Peano continuum
 reduced paths
 semicovering
 Shape theory
 Simplicial complexes
 Singular homology
 Tree
 Ultrafilter
 Uncategorized
Tweets
 RT @amy_nusbaum: If you don't find the joy in students, I'm not sure why you're a professor. 12 hours ago
 Donations needed for December Groceries for Philly with educationcentered @Philly_RJ. G4P is always held at a publ… twitter.com/i/web/status/1… 17 hours ago
 Someone just recently asked me if I knew the lattice of connected coverings of this space. It's a neat little thing… twitter.com/i/web/status/1… 21 hours ago
 RT @RevJacquiLewis: Hi nice white people: The true test of your commitment to confront racism is how you act in white spaces. When you go… 2 days ago
 RT @MarissaKawehi: Postdocs who treat their students like shit because they are “focused on their research” make me so angry! I’m a researc… 3 days ago

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tag Archives: fundamental group
The Griffiths Twin Cone
This post is about an important wild space which, in many ways, is similar to the harmonic archipelago space that I posted about a few weeks ago. The Griffiths twin cone (or Griffiths space) was first studied by H.B. Griffiths in the 1950’s … Continue reading
Homomorphisms from the harmonic archipelago group to finite groups
This post is a brief application of a result discussed in the last post about the existence of odd ways to map the fundamental group of the Hawaiian earring onto an arbitrary finite group : Theorem 1: Let be any nontrivial finite group and be a loop … Continue reading
Homomorphisms from the earring group to finite groups
One of the the surprising things about the earring group (the fundamental group of the earring space ) is that the group of homomorphisms to the additive group of integers is countable (see this post for details) even though is … Continue reading