*Learning Goal: Build conceptual understanding of proving parallel lines & transversal theorems.*

# Google Slides

# Classwork

- Estimation 180 – Day 113 (Andrew Stadel)
- Warm Up
- Need to do a better job in this unit of talking about only parallel lines make these things true. Focus more on consecutive angles.
- Practice
- Taken from New Visions

- Conditional Statements & Spiraling

# Note:

- Challenge problems in this lesson are from Joey Warren

# Standards:

**Common Core**- HSG.CO.C.9 – Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

**TEKS**- G.4(A) – distinguish between undefined terms, definitions, postulates, conjectures, and theorems
- G.4(B) – identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse
- G.4(C) – verify that a conjecture is false using a counterexample
- G.6(A) – verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems